# data.info()
use for displaying Column Name,[Data type], null/Non/Null
#data.describe().T
use to display Mean,Median Mode, Percentile,Min and max Value
#data.corr().style.background_gradient(cmap='coolwarm')
use to Display and Calculate Correlation among Columns,
#data.isna()
for finding null value in columns
#data.isna().sum()
for displaying total null values in columns
#data['classification'].unique()
to display Unique Value
#data[['classification','id']].groupby('classification').count()
to display Count value group by naother column
#data.drop(['id','rbc'],axis=1,inplace=True)
droping Columns
#data['age'].mean()
calculating Mean of Column
#data['dm'].replace(to_replace = {' yes':'yes'},inplace=True)
replacing a value with another value
#data['appet'].fillna( data['appet'].mode()[0], inplace=True)
Filling Null Value with Mode
# for col in data.columns:
print(f"{col} has {data[col].unique()} values\n")
Displaying all columns Unique Value
#
g = sns.PairGrid(data)
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
Displaying Pair Plot
#sns.catplot(x="classification", y="age",data=data,hue='appet',col='htn')
Displaying Category Plot
#sns.boxplot(x='htn',y='age',data=notchk_age)
Displaying Box Plot